Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38096358

RESUMO

Relapse following complete remission (CR) remains the main cause of mortality after allogeneic stem cell transplantation for hematological malignancies and therefore improved biomarkers for early prediction of relapse remains a critical goal towards development and assessment of preemptive relapse treatment. Since the significance of cancer stem cells as a source of relapses remains unclear, we investigated whether mutational screening for persistence of rare cancer stem cells would enhance measurable residual disease (MRD) and early relapse-prediction post-transplantation. In a retrospective study of relapse patients and continuous-CR patients with myelodysplastic syndromes and related myeloid malignancies, combined flow cytometric cell sorting and mutational screening for persistence of rare relapse-initiating stem cells was performed in bone marrow at multiple CR time points post-transplantation. In 25 CR samples from 15 patients that later relapsed, only 9 samples were MRD-positive in mononuclear cells (MNCs) whereas flowcytometric sorted hematopoietic stem and progenitor cells (HSPCs) were MRD-positive in all samples, and always with a higher variant allele frequency than in MNCs (mean 97-fold). MRD-positivity in HSPCs preceded MNCs in multiple sequential samples, in some cases preceding relapse by more than 2 years. In distinction, in 13 patients in long-term continuous-CR, HSPCs remained MRD-negative. Enhanced MRD-sensitivity was also observed in total CD34+ cells, but HSPCs were always more clonally involved (mean 8-fold).In conclusion, identification of relapse-initiating cancer stem cells and mutational MRD-screening for their persistence consistently enhances MRD-sensitivity and earlier prediction of relapse after allogeneic stem cell transplantation.

2.
Nat Cancer ; 4(10): 1474-1490, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37783807

RESUMO

Acute myeloid leukemia (AML), the most frequent leukemia in adults, is driven by recurrent somatically acquired genetic lesions in a restricted number of genes. Treatment with tyrosine kinase inhibitors has demonstrated that targeting of prevalent FMS-related receptor tyrosine kinase 3 (FLT3) gain-of-function mutations can provide significant survival benefits for patients, although the efficacy of FLT3 inhibitors in eliminating FLT3-mutated clones is variable. We identified a T cell receptor (TCR) reactive to the recurrent D835Y driver mutation in the FLT3 tyrosine kinase domain (TCRFLT3D/Y). TCRFLT3D/Y-redirected T cells selectively eliminated primary human AML cells harboring the FLT3D835Y mutation in vitro and in vivo. TCRFLT3D/Y cells rejected both CD34+ and CD34- AML in mice engrafted with primary leukemia from patients, reaching minimal residual disease-negative levels, and eliminated primary CD34+ AML leukemia-propagating cells in vivo. Thus, T cells targeting a single shared mutation can provide efficient immunotherapy toward selective elimination of clonally involved primary AML cells in vivo.


Assuntos
Leucemia Mieloide Aguda , Proteínas Tirosina Quinases , Adulto , Humanos , Animais , Camundongos , Mutação , Proteínas Tirosina Quinases/genética , Mutação com Ganho de Função , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos de Linfócitos T/genética , Tirosina Quinase 3 Semelhante a fms/genética
4.
Nat Biotechnol ; 40(4): 488-498, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34873326

RESUMO

Unlike chimeric antigen receptors, T-cell receptors (TCRs) can recognize intracellular targets presented on human leukocyte antigen (HLA) molecules. Here we demonstrate that T cells expressing TCRs specific for peptides from the intracellular lymphoid-specific enzyme terminal deoxynucleotidyl transferase (TdT), presented in the context of HLA-A*02:01, specifically eliminate primary acute lymphoblastic leukemia (ALL) cells of T- and B-cell origin in vitro and in three mouse models of disseminated B-ALL. By contrast, the treatment spares normal peripheral T- and B-cell repertoires and normal myeloid cells in vitro, and in vivo in humanized mice. TdT is an attractive cancer target as it is highly and homogeneously expressed in 80-94% of B- and T-ALLs, but only transiently expressed during normal lymphoid differentiation, limiting on-target toxicity of TdT-specific T cells. TCR-modified T cells targeting TdT may be a promising immunotherapy for B-ALL and T-ALL that preserves normal lymphocytes.


Assuntos
DNA Nucleotidilexotransferase , Linfócitos T , Animais , Células-Tronco Hematopoéticas , Linfócitos , Camundongos , Receptores de Antígenos de Linfócitos T/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...